Extensions 1→N→G→Q→1 with N=C2 and Q=C23.20D4

Direct product G=N×Q with N=C2 and Q=C23.20D4
dρLabelID
C2×C23.20D464C2xC2^3.20D4128,1820


Non-split extensions G=N.Q with N=C2 and Q=C23.20D4
extensionφ:Q→Aut NdρLabelID
C2.1(C23.20D4) = C24.69D4central extension (φ=1)64C2.1(C2^3.20D4)128,557
C2.2(C23.20D4) = C24.71D4central extension (φ=1)64C2.2(C2^3.20D4)128,586
C2.3(C23.20D4) = C24.73D4central extension (φ=1)64C2.3(C2^3.20D4)128,605
C2.4(C23.20D4) = C2.D84C4central extension (φ=1)128C2.4(C2^3.20D4)128,650
C2.5(C23.20D4) = C4.Q89C4central extension (φ=1)128C2.5(C2^3.20D4)128,651
C2.6(C23.20D4) = C4.68(C4×D4)central extension (φ=1)128C2.6(C2^3.20D4)128,659
C2.7(C23.20D4) = C2.(C4×Q16)central extension (φ=1)128C2.7(C2^3.20D4)128,660
C2.8(C23.20D4) = C24.85D4central stem extension (φ=1)64C2.8(C2^3.20D4)128,767
C2.9(C23.20D4) = C24.86D4central stem extension (φ=1)64C2.9(C2^3.20D4)128,768
C2.10(C23.20D4) = (C2×Q8).109D4central stem extension (φ=1)128C2.10(C2^3.20D4)128,806
C2.11(C23.20D4) = C23.12D8central stem extension (φ=1)64C2.11(C2^3.20D4)128,807
C2.12(C23.20D4) = C24.89D4central stem extension (φ=1)64C2.12(C2^3.20D4)128,809
C2.13(C23.20D4) = (C2×C8).24Q8central stem extension (φ=1)128C2.13(C2^3.20D4)128,817
C2.14(C23.20D4) = (C2×C8).171D4central stem extension (φ=1)128C2.14(C2^3.20D4)128,829
C2.15(C23.20D4) = C4⋊C4.Q8central stem extension (φ=1)128C2.15(C2^3.20D4)128,833

׿
×
𝔽